Permitting requirements / process

This Lap analyses the legal (regulations and standards) requirements for HRS and the permitting process, including the administrative process involved in obtaining the required approvals to build and operate a HRS.
Where applicable, it looks at whether the permitting process consists of several processes involving multiple permits and authorities and the nature of each of these processes and steps

Glossary:

Permitting requirements are the legal (regulations and standards) requirements for HRS and the permitting process is the administrative process involved in obtaining the required approvals to build and operate a HRS. The permitting process is actually several processes involving multiple permits and authorities.

Pan-European Assessment:

When considering the process for permitting of construction and operation of an HRS, there are very few countries where the regulations specifically target H2 HRS, the most advanced of these being Germany, Denmark, the UK and the Netherlands.
Where explicit requirements exist, they invariably require a risk assessment to be carried out covering safety risks associated with fire and explosion, risks to health and risks to the environment. The risk assessments should also identify the control measures to be put in place to provide an adequate level of public safety for the proposed installations. The risk assessment should include an assessment of the major accident hazards presented by the delivery, storage and dispensing of hydrogen at the site and identify controls and contingency plans.

Where specific regulations for hydrogen fuelling stations don’t exist, it is expected that authorities will draw on both the permitting process of conventional refuelling stations as well as the regulations applicable for (industrial) H2 storage and for H2 production. This method of working generates requirements well beyond those applicable to conventional stations and the permitting process carries some “regulatory risks” for the operator, as the interpretation and demands from the regional administrative authority can be different from one region to another. By contrast, the requirements for conventional fuel storage at refuelling station are very similar in all EU countries. The lack of experience of potential HRS operators as well as public authorities coupled with the lack of guidelines and instructions for local authorities can cause delays and extra costs and may lead to divergent interpretations from case-to-case, further complicating the obligations of HRS operators.
Is it a barrier?
Yes
Type of Barrier
Operational barriers
Assessment Severity
1
Assessment
The LAP is important for the identification and analysis of specific requirements for the HRS permit.

Some municipalities place more stringent requirements than those provided for in the legislation for a certain HRS and storage volume such as, e.g. conducting an environmental impact assessment or opting for a formal, publicly attended procedure when this is not required.

Questions:

Question 1 What is the competent authority responsible for the permitting requirements? If more than one, list them
The responsible authorities vary among the states, normally this is the state Trade Supervisory Inspectorate (Gewerbeaufsichtsamt). For granting building permits the responsible authorities are the Building Regulatory Authorities.
Question 2 What are the different steps of the process (e.g. which authority in charge of each step)? If possible, add a flow chart.
The procedures for permitting a HRS with or without on-site production are the following: 1. For the building of HRS with on-site production or without on-site production, but storage < 3t: - procedure according to §13 of Ordinance for Industrial Safety and Health for granting a construction and operation permit; - procedure according to Federal State Building Regulations for granting a building permit; 2. For the building of HRS without on-site production, but storage on-site ≥ 3t < 30t - simplified permit procedure according to §19 of Federal Immission Control Act for granting a construction and operation permit (includes the building permit procedure and the environmental impact assessment, if required); 3. For the building of HRS with on-site production (if considered as production on an industrial scale) or without on-site production, but storage ≥ 30t - formal permit procedure with public participation according to § 10 of Federal Immission Control Act. (includes the building permit procedure and the environmental impact assessment, if required The main steps of the permitting process are: Step 1. Definition of the scope of the project by the owner; Step 2. Identification of the applicable permit procedure, permit authority and stakeholders to be involved; Step 3. Submission of approval application accompanied by: • expert opinion of authorized inspection body (ZÜS report). The authorized inspection bodies are TÜV, DEKRA etc. The expert opinion shall be in accordance with the Ordinance of Industrial Safety and Health and normally consist of description and assessment of planned facilities and operating procedures with regard to the safety requirements, fire and explosion protection as well as to the Ordinance of Hazardous Substances; • documents, describing the planned facility, processes, equipment, safety measures etc.; • site plan, construction drawings (required for the building permit). Step 4.Provision of information to the general public(in case of formal procedure with public participation): • – public announcement of the project • – public disclosure of the approval application; • – possibility of objections; • – public display of the plans. Step 5. Issuing of construction and operation permit, including building permit. Step 6. Commissioning
Question 3 Are there any exemptions/ “simplified” process (e.g. for demonstration projects)?
No permit according to the Federal Immission Control Act is required for installations when they are used for the research, development or testing of new feedstocks, fuels or processes in laboratories or in pilot plants. However, the pilot plants must be constructed and operated in such a way that environmental damage is prevented, where the state of technology allows; any unavoidable environmental impact must be kept to a minimum. A building permit is required.
Question 4 What kind of permits are needed from the approval authority, and are they separated/integrated (single permit)? E.g. building permit, construction a operation permit for installations, environmental permit
1. For the building of HRS with on- site production or without on-site production, but storage < 3t: - construction and operation permit according to §13 of Ordinance for Industrial Safety and Health; - building permit according to the relevant Federal State Building Regulation; 2. For the building of HRS without on-site production, but storage on-site ≥ 3t < 30t -construction and operation permit (includes the building permit) after simplified permit procedure according to § 19 of Federal Immission Control Act; 3. For the building of a HRS with on-site production (if considered as production on an industrial scale) or without on-site production, but storage ≥ 30t - construction and operation permit (includes the building permit) after formal permit procedure with public participation according to § 10 of Federal Immission Control Act;
Question 5 Is the process at local level uniform throughout a country? (uniform interpretation?)
There is a common legal framework for issuing construction and operation permits, although the permitting requirements and procedures, and also permitting authorities vary among the federal states. The requirements and procedures for building permits are regulated in the State Buildings Ordinances and may vary significantly.
Question 6 How long does it take to obtain a permit for the construction and operation of HRS? a - Is there a maximum response time for granting the permit?
a - yes
Question 6 How long does it take to obtain a permit for the construction and operation of HRS? b - If yes, what is the response time?
After submitting of all required documents: a) procedure according to the Ordinance on Industrial Safety and Health – 3 months; b) simplified permit procedure according to the Federal Immission Control Act – 3 months. In justified cases, the response time can be extended as appropriate by 3 months; c) formal permit procedure according to the Federal Immission Control Act – 7 months.
Question 6 How long does it take to obtain a permit for the construction and operation of HRS? c - What is the actual experience in practice? How long does it take to obtain a permit for the construction and operation of HRS?
In practice after submission of application the granting of permit takes 9–12 months for simplified and 12–15 months for formal procedure.
Question 7 Are there specific requirements from the authorities before/during/after construction of HRS for its commissioning?
Compilation of documents and inspection of the HRS by the authorized inspection body (ZÜS) for commissioning 1. The following documents have to be delivered to the permitting authority, if not delivered with the permit application – risk evaluation, explosion protection document, emergency–danger–defence plan, alarm and fire service action plan, documents of pressure equipment, electric circuit diagram; 2. The inspection has the following scope: inspection of: the documentation for completeness and accuracy, the conformity of the installed facility with the permitted facility, the correctness of the installation and assembly (leakage test, etc.), the proper placement etc. The inspection certificate has to be submitted to the permitting authority.
Question 8 When is the HRS ready for operation?
After commissioning the approved HRS is ready for effective and safe operation.
Describe the comparable technology and its relevance with regard to hydrogen
Permitting of refuelling station for conventional fuels.

National legislation:

EU Legislation:

  • Directive 2012/18/EU of the European Parliament and of the Council of 4 July 2012 on the control of major-accident hazards involving dangerous substances (so-called SEVESO Directive)
    The Directive covers situations where dangerous substances may be present (e.g. during processing or storage) in quantities exceeding certain thresholds.

    It establishes:
    • General obligations on the operator (Article 5)
    • Notification (information on the form and amount of substances, the activity, and the surrounding environment) of all concerned establishments (Article 7),
    • The obligation to deploy a major accident prevention policy (Article 8),
    • The obligation to produce a safety report for upper-tier establishments (Article 10);
    • The obligation to produce internal emergency plans for upper tier establishments (Article 12);
    • Authorities to exert control of the siting of new establishments, modifications to new establishments, and new developments including transport routes, locations of public use and residential areas in the vicinity of establishments, (Article 13)
    • The obligation to conduct public consultations on specific individual projects that may involve risk of major accidents (Article 15)

    Annex I, Part 1, establishes Hydrogen as a dangerous substance (therefore within scope) and lists the quantity of hydrogen for the application of lower-tier requirements (≥ 5t) and upper-tier requirements (≥ 50t).

    For quantities of less than 5 tonnes of hydrogen, none of the obligations above would apply.

    The Directive is relevant for both the approval of bunkering / landing installations as well as on board transport of hydrogen
  • ATEX Directive 2014/34/EU - covering equipment and protective systems intended for use in potentially explosive atmospheres
    The Directive defines the essential health and safety requirements and conformity assessment procedures (Article 4) to be applied before products are placed on the EU market and is significant for the engineering of hydrogen production plants. It covers inter alia equipment and protective systems intended for use in potentially explosive atmospheres.

    The Directive requires employers to classify areas where hazardous explosive atmospheres may occur into zones. The classification given to a particular zone, and its size and location, depends on the likelihood of an explosive atmosphere occurring and its persistence if it does.

    The Directive requires the manufacturers to design their equipment to be suitable for use within their customer’s explosive atmosphere. Therefore, manufacturers of equipment rely upon their customer to give them information about the classification of the zone and the flammable substance(s) within that zone.

    The Directive describes the rules and regulations for all actors in the value chain, with respect to ensuring that only safe equipment for use in potentially explosive atmospheres are sold and applied. It provides regulation of how the equipment shall be constructed, produced and documented, as well as the rules for CE-labelling.

    It also contains, inter alia conformity assessment procedures (Art 13) EU declaration of conformity (Art 14) and General principles of the CE marking (Art 16)

    The Directive is relevant for the approval of landing / bunkering installations
  • Directive 2014/52/EU of the European Parliament and of the Council of 16 April 2014 amending Directive 2011/92/EU on the assessment of the effects of certain public and private projects on the environment).
    The Directives (and their subsequent amendments) define a strategic environmental impact assessment procedure. The procedure is summarized as follows: the developer may request the competent authority define what should be covered by the EIA information to be provided by the developer (scoping stage); the developer must provide information on the environmental impact (EIA report – Annex IV); the environmental authorities and the public (and affected Member States) must be informed and consulted; the competent authority decides, taken into consideration the results of consultations. The public is informed of the decision afterwards and can challenge the decision before the courts.

    In line with the EIA Directive, Production and Storage of Hydrogen falls within the projects listed in Annex II (6a and 6c -production of chemicals; and storage facilities for chemical product), for which Member States shall determine whether the project shall be made subject to an assessment or not. In some EU countries, storage of 5 tons of hydrogen or more falls within the scope of the Directives.

    The latest amendment, (Directive 2014/52/EU) introduces minimum requirements with regards to the type of projects subject to assessment, the main obligations of developers, the content of the assessment and the participation of the competent authorities and the public.
  • Directive 2011/92/EU of the European Parliament and of the Council of 13 December 2011 on the assessment of the effects of certain public and private projects on the environment (EIA Directive)
    The Directives (and their subsequent amendments) define a strategic environmental impact assessment procedure. The procedure is summarized as follows: the developer may request the competent authority define what should be covered by the EIA information to be provided by the developer (scoping stage); the developer must provide information on the environmental impact (EIA report – Annex IV); the environmental authorities and the public (and affected Member States) must be informed and consulted; the competent authority decides, taken into consideration the results of consultations. The public is informed of the decision afterwards and can challenge the decision before the courts.

    In line with the EIA Directive, Production and Storage of Hydrogen falls within the projects listed in Annex II (6a and 6c -production of chemicals; and storage facilities for chemical product), for which Member States shall determine whether the project shall be made subject to an assessment or not. In some EU countries, storage of 5 tons of hydrogen or more falls within the scope of the Directives.

    The latest amendment, (Directive 2014/52/EU) introduces minimum requirements with regards to the type of projects subject to assessment, the main obligations of developers, the content of the assessment and the participation of the competent authorities and the public.
  • Directive 2001/42/EC on the assessment of the effects of certain plans and programmes on the environment (SEA Directive)
    The Directives (and their subsequent amendments) define a strategic environmental impact assessment procedure. The procedure is summarized as follows: the developer may request the competent authority define what should be covered by the EIA information to be provided by the developer (scoping stage); the developer must provide information on the environmental impact (EIA report – Annex IV); the environmental authorities and the public (and affected Member States) must be informed and consulted; the competent authority decides, taken into consideration the results of consultations. The public is informed of the decision afterwards and can challenge the decision before the courts.

    In line with the EIA Directive, Production and Storage of Hydrogen falls within the projects listed in Annex II (6a and 6c -production of chemicals; and storage facilities for chemical product), for which Member States shall determine whether the project shall be made subject to an assessment or not. In some EU countries, storage of 5 tons of hydrogen or more falls within the scope of the Directives.

    The latest amendment, (Directive 2014/52/EU) introduces minimum requirements with regards to the type of projects subject to assessment, the main obligations of developers, the content of the assessment and the participation of the competent authorities and the public.
    X
  • Directive 2014/94/EU of the European Parliament and of the Council of 22 October 2014 on the deployment of alternative fuels infrastructure (AFID)
    The AFID establishes a common framework of measures for the deployment of alternative fuels infrastructure in the Union in order to minimize dependence on oil and to mitigate the environmental impact of transport.

    The Directive sets out minimum requirements for the building-up of alternative fuels infrastructure, including recharging points for electric vehicles and refuelling points for natural gas (LNG and CNG) and hydrogen, to be implemented by means of Member States' national policy frameworks, as well as common technical specifications for such recharging and refuelling points, and user information requirements.

    Article 2 defines ‘Alternative fuels’ as fuels or power sources which serve, at least partly, as a substitute for fossil oil sources in the energy supply to transport and which have the potential to contribute to its decarbonisation and enhance the environmental performance of the transport sector. They include, inter alia: hydrogen.

    It lays down, in Article 5, that Member States which decide to include hydrogen refuelling points accessible to the public in their national policy frameworks shall ensure that, by 31 December 2025, an appropriate number of such points are available, to ensure the circulation of hydrogen-powered motor vehicles, including fuel cell vehicles, within networks determined by those Member States, including, where appropriate, cross-border links.

    Annex II contains technical specifications for hydrogen refuelling points for motor vehicles and additionally lays down that:
    • Outdoor hydrogen refuelling points dispensing gaseous hydrogen used as fuel on board motor vehicles shall comply with the technical specifications of the ISO/TS 20100 Gaseous Hydrogen Fuelling specification.
    • The hydrogen purity dispensed by hydrogen refuelling points shall comply with the technical specifications included in the ISO 14687-2 standard.
    • Hydrogen refuelling points shall employ fuelling algorithms and equipment complying with the ISO/TS 20100 Gaseous Hydrogen Fuelling specification.
    • Connectors for motor vehicles for the refuelling of gaseous hydrogen shall comply with the ISO 17268 gaseous hydrogen motor vehicle refuelling connection devices standard.
  • ISO/TS 19880–1:2016(en) Gaseous hydrogen – Fuelling stations – Part 1: General requirements 90.92 43.060.40 71.100.20 ISO/NP 19880–1 Gaseous hydrogen – Fuelling stations – Part 1: General requirements 10.99 43.060.40 71.100.20 ISO/CD 19880–2 Gaseous hydrogen – Fuelling stations –– Part 2: Dispensers 30.92 43.060.40 71.100.20 ISO/DIS 19880–3 Gaseous hydrogen – Fuelling stations – Part 3: Valves 40.60 43.060.40 71.100.20 ISO/AWI 19880–4 Gaseous hydrogen – Fuelling stations – Part 4: Compressors 20.00 ISO/CD 19880–5 Gaseous hydrogen – Fuelling stations – Part 5: Hoses 30.60 43.060.40 71.100.20 ISO/AWI 19880–6 Gaseous hydrogen – Fuelling stations – Part 6: Fittings 20.00 ISO/CD 19880–8 Gaseous hydrogen – Fuelling stations – Part 8: Hydrogen quality control