Permitting requirements / process

This Lap analyses the legal (regulations and standards) requirements for HRS and the permitting process, including the administrative process involved in obtaining the required approvals to build and operate a HRS.
Where applicable, it looks at whether the permitting process consists of several processes involving multiple permits and authorities and the nature of each of these processes and steps

Glossary:

Permitting requirements are the legal (regulations and standards) requirements for HRS and the permitting process is the administrative process involved in obtaining the required approvals to build and operate a HRS. The permitting process is actually several processes involving multiple permits and authorities.

Pan-European Assessment:

When considering the process for permitting of construction and operation of an HRS, there are very few countries where the regulations specifically target H2 HRS, the most advanced of these being Germany, Denmark, the UK and the Netherlands.
Where explicit requirements exist, they invariably require a risk assessment to be carried out covering safety risks associated with fire and explosion, risks to health and risks to the environment. The risk assessments should also identify the control measures to be put in place to provide an adequate level of public safety for the proposed installations. The risk assessment should include an assessment of the major accident hazards presented by the delivery, storage and dispensing of hydrogen at the site and identify controls and contingency plans.

Where specific regulations for hydrogen fuelling stations don’t exist, it is expected that authorities will draw on both the permitting process of conventional refuelling stations as well as the regulations applicable for (industrial) H2 storage and for H2 production. This method of working generates requirements well beyond those applicable to conventional stations and the permitting process carries some “regulatory risks” for the operator, as the interpretation and demands from the regional administrative authority can be different from one region to another. By contrast, the requirements for conventional fuel storage at refuelling station are very similar in all EU countries. The lack of experience of potential HRS operators as well as public authorities coupled with the lack of guidelines and instructions for local authorities can cause delays and extra costs and may lead to divergent interpretations from case-to-case, further complicating the obligations of HRS operators.
Is it a barrier?
Yes
Assessment Severity
2
Assessment
The lack of implementing regulations of the Ministerial Decree 31 August 2006 causing a major obstacle in the diffusion of HRS in Italy has been overcome thank to a new Decree of 2018, allowing for 700 bars and better alignment to ISO 19880. The local Fire Department refers to this Decree to establish the required safety measures and it is responsible for providing an evaluation in terms of safety and fire prevention. Each municipality may apply different rules for installing a hydrogen refuelling station, and these need to be taken into account when applying for permission to build and operate a HRS.
From a land-use perspective, HRS do not differ significantly from conventional refuelling stations (in general) and those using compressed natural gas (CNG) in particular. However, the lack of specific rules regarding HRS raise the risk that legislation applicable to (industrial) hydrogen production (see category 1) or hydrogen storage (see category 2) would be strictly interpreted and applied mutatis mutandis to HRS thus limiting considerably the zones where some HRSs (especially those with on-site production or with high storage capacity) can be located.

Questions:

Question 1 What is the competent authority responsible for the permitting requirements? If more than one, list them
The responsible authorities are the Municipality and Fire Department
Question 2 What are the different steps of the process (e.g. which authority in charge of each step)? If possible, add a flow chart.
As foreseen in the Legislative Decree 16 December 2016, n.257 ( National transposition of Directive 2014/94/EU on the Deployment of Alternative Fuels), art.16, the requirements for developing hydrogen refuelling stations are indicated in Legislative Decree 11 February 1998 n.32. The different steps can be summarised as: Building Permit from the Municipal/Local Authority and Operating Permit from Municipal/Local Authority based on permission from Fire Department.
Question 3 Are there any exemptions/ “simplified” process (e.g. for demonstration projects)?
There is no simplified process
Question 4 What kind of permits are needed from the approval authority, and are they separated/integrated (single permit)? E.g. building permit, construction a operation permit for installations, environmental permit
Different permits are needed, such as building permit, operating permit, certification of municipality regarding the suitability of the area (safety distance, environmental impact) and permission of Fire Department.
Question 5 Is the process at local level uniform throughout a country? (uniform interpretation?)
The process at local level depends on discretional considerations of the Municipality and local Fire Department
Question 6 How long does it take to obtain a permit for the construction and operation of HRS? a) Is there a maximum response time for granting the permit? b) If yes, what is the response time? c) What is the actual experience in practice?
Based on Legislative Decree 11 February 1998, n. 32, the municipality must respond to the request either positively or negatively within 90 days, after which the permit is considered as granted. The actual experience is that the permitting process can be very time consuming; the municipalities of the Regions have different requirements within the country. From the request of permits the tim needed to obtain all the permits varies from 6 months up to 12 months.
Question 6 How long does it take to obtain a permit for the construction and operation of HRS? a - Is there a maximum response time for granting the permit?
a - Not available
Question 6 How long does it take to obtain a permit for the construction and operation of HRS? b - If yes, what is the response time?
Based on Legislative Decree 11 February 1998, n. 32, the municipality must respond to the request either positively or negatively within 90 days, after which the permit is considered as granted.
Question 6 How long does it take to obtain a permit for the construction and operation of HRS? c - What is the actual experience in practice? How long does it take to obtain a permit for the construction and operation of HRS?
The actual experience is from 6 to 12 months.
Question 7 Are there specific requirements from the authorities before/during/after construction of HRS for its commissioning?
Requirements for the construction of the HRS are reported in the Annex to Ministerial Decree of 23 October 2018.
Question 8 When is the HRS ready for operation?
The time needed for HRS operation could last one year due to the high number of the necessary certifications.
Describe the comparable technology and its relevance with regard to hydrogen
Natural gas for refuelling station installation

National legislation:

EU Legislation:

  • Directive 2012/18/EU of the European Parliament and of the Council of 4 July 2012 on the control of major-accident hazards involving dangerous substances (so-called SEVESO Directive)
    The Directive covers situations where dangerous substances may be present (e.g. during processing or storage) in quantities exceeding certain thresholds.

    It establishes:
    • General obligations on the operator (Article 5)
    • Notification (information on the form and amount of substances, the activity, and the surrounding environment) of all concerned establishments (Article 7),
    • The obligation to deploy a major accident prevention policy (Article 8),
    • The obligation to produce a safety report for upper-tier establishments (Article 10);
    • The obligation to produce internal emergency plans for upper tier establishments (Article 12);
    • Authorities to exert control of the siting of new establishments, modifications to new establishments, and new developments including transport routes, locations of public use and residential areas in the vicinity of establishments, (Article 13)
    • The obligation to conduct public consultations on specific individual projects that may involve risk of major accidents (Article 15)

    Annex I, Part 1, establishes Hydrogen as a dangerous substance (therefore within scope) and lists the quantity of hydrogen for the application of lower-tier requirements (≥ 5t) and upper-tier requirements (≥ 50t).

    For quantities of less than 5 tonnes of hydrogen, none of the obligations above would apply.

    The Directive is relevant for both the approval of bunkering / landing installations as well as on board transport of hydrogen
  • ATEX Directive 2014/34/EU - covering equipment and protective systems intended for use in potentially explosive atmospheres
    The Directive defines the essential health and safety requirements and conformity assessment procedures (Article 4) to be applied before products are placed on the EU market and is significant for the engineering of hydrogen production plants. It covers inter alia equipment and protective systems intended for use in potentially explosive atmospheres.

    The Directive requires employers to classify areas where hazardous explosive atmospheres may occur into zones. The classification given to a particular zone, and its size and location, depends on the likelihood of an explosive atmosphere occurring and its persistence if it does.

    The Directive requires the manufacturers to design their equipment to be suitable for use within their customer’s explosive atmosphere. Therefore, manufacturers of equipment rely upon their customer to give them information about the classification of the zone and the flammable substance(s) within that zone.

    The Directive describes the rules and regulations for all actors in the value chain, with respect to ensuring that only safe equipment for use in potentially explosive atmospheres are sold and applied. It provides regulation of how the equipment shall be constructed, produced and documented, as well as the rules for CE-labelling.

    It also contains, inter alia conformity assessment procedures (Art 13) EU declaration of conformity (Art 14) and General principles of the CE marking (Art 16)

    The Directive is relevant for the approval of landing / bunkering installations
  • Directive 2014/52/EU of the European Parliament and of the Council of 16 April 2014 amending Directive 2011/92/EU on the assessment of the effects of certain public and private projects on the environment).
    The Directives (and their subsequent amendments) define a strategic environmental impact assessment procedure. The procedure is summarized as follows: the developer may request the competent authority define what should be covered by the EIA information to be provided by the developer (scoping stage); the developer must provide information on the environmental impact (EIA report – Annex IV); the environmental authorities and the public (and affected Member States) must be informed and consulted; the competent authority decides, taken into consideration the results of consultations. The public is informed of the decision afterwards and can challenge the decision before the courts.

    In line with the EIA Directive, Production and Storage of Hydrogen falls within the projects listed in Annex II (6a and 6c -production of chemicals; and storage facilities for chemical product), for which Member States shall determine whether the project shall be made subject to an assessment or not. In some EU countries, storage of 5 tons of hydrogen or more falls within the scope of the Directives.

    The latest amendment, (Directive 2014/52/EU) introduces minimum requirements with regards to the type of projects subject to assessment, the main obligations of developers, the content of the assessment and the participation of the competent authorities and the public.
  • Directive 2011/92/EU of the European Parliament and of the Council of 13 December 2011 on the assessment of the effects of certain public and private projects on the environment (EIA Directive)
    The Directives (and their subsequent amendments) define a strategic environmental impact assessment procedure. The procedure is summarized as follows: the developer may request the competent authority define what should be covered by the EIA information to be provided by the developer (scoping stage); the developer must provide information on the environmental impact (EIA report – Annex IV); the environmental authorities and the public (and affected Member States) must be informed and consulted; the competent authority decides, taken into consideration the results of consultations. The public is informed of the decision afterwards and can challenge the decision before the courts.

    In line with the EIA Directive, Production and Storage of Hydrogen falls within the projects listed in Annex II (6a and 6c -production of chemicals; and storage facilities for chemical product), for which Member States shall determine whether the project shall be made subject to an assessment or not. In some EU countries, storage of 5 tons of hydrogen or more falls within the scope of the Directives.

    The latest amendment, (Directive 2014/52/EU) introduces minimum requirements with regards to the type of projects subject to assessment, the main obligations of developers, the content of the assessment and the participation of the competent authorities and the public.
  • Directive 2001/42/EC on the assessment of the effects of certain plans and programmes on the environment (SEA Directive)
    The Directives (and their subsequent amendments) define a strategic environmental impact assessment procedure. The procedure is summarized as follows: the developer may request the competent authority define what should be covered by the EIA information to be provided by the developer (scoping stage); the developer must provide information on the environmental impact (EIA report – Annex IV); the environmental authorities and the public (and affected Member States) must be informed and consulted; the competent authority decides, taken into consideration the results of consultations. The public is informed of the decision afterwards and can challenge the decision before the courts.

    In line with the EIA Directive, Production and Storage of Hydrogen falls within the projects listed in Annex II (6a and 6c -production of chemicals; and storage facilities for chemical product), for which Member States shall determine whether the project shall be made subject to an assessment or not. In some EU countries, storage of 5 tons of hydrogen or more falls within the scope of the Directives.

    The latest amendment, (Directive 2014/52/EU) introduces minimum requirements with regards to the type of projects subject to assessment, the main obligations of developers, the content of the assessment and the participation of the competent authorities and the public.
    X
  • Directive 2014/94/EU of the European Parliament and of the Council of 22 October 2014 on the deployment of alternative fuels infrastructure (AFID)
    The AFID establishes a common framework of measures for the deployment of alternative fuels infrastructure in the Union in order to minimize dependence on oil and to mitigate the environmental impact of transport.

    The Directive sets out minimum requirements for the building-up of alternative fuels infrastructure, including recharging points for electric vehicles and refuelling points for natural gas (LNG and CNG) and hydrogen, to be implemented by means of Member States' national policy frameworks, as well as common technical specifications for such recharging and refuelling points, and user information requirements.

    Article 2 defines ‘Alternative fuels’ as fuels or power sources which serve, at least partly, as a substitute for fossil oil sources in the energy supply to transport and which have the potential to contribute to its decarbonisation and enhance the environmental performance of the transport sector. They include, inter alia: hydrogen.

    It lays down, in Article 5, that Member States which decide to include hydrogen refuelling points accessible to the public in their national policy frameworks shall ensure that, by 31 December 2025, an appropriate number of such points are available, to ensure the circulation of hydrogen-powered motor vehicles, including fuel cell vehicles, within networks determined by those Member States, including, where appropriate, cross-border links.

    Annex II contains technical specifications for hydrogen refuelling points for motor vehicles and additionally lays down that:
    • Outdoor hydrogen refuelling points dispensing gaseous hydrogen used as fuel on board motor vehicles shall comply with the technical specifications of the ISO/TS 20100 Gaseous Hydrogen Fuelling specification.
    • The hydrogen purity dispensed by hydrogen refuelling points shall comply with the technical specifications included in the ISO 14687-2 standard.
    • Hydrogen refuelling points shall employ fuelling algorithms and equipment complying with the ISO/TS 20100 Gaseous Hydrogen Fuelling specification.
    • Connectors for motor vehicles for the refuelling of gaseous hydrogen shall comply with the ISO 17268 gaseous hydrogen motor vehicle refuelling connection devices standard.
  • ISO/TS 19880–1:2016(en) Gaseous hydrogen – Fuelling stations – Part 1: General requirements 90.92 43.060.40 71.100.20 ISO/NP 19880–1 Gaseous hydrogen – Fuelling stations – Part 1: General requirements 10.99 43.060.40 71.100.20 ISO/CD 19880–2 Gaseous hydrogen – Fuelling stations –– Part 2: Dispensers 30.92 43.060.40 71.100.20 ISO/DIS 19880–3 Gaseous hydrogen – Fuelling stations – Part 3: Valves 40.60 43.060.40 71.100.20 ISO/AWI 19880–4 Gaseous hydrogen – Fuelling stations – Part 4: Compressors 20.00 ISO/CD 19880–5 Gaseous hydrogen – Fuelling stations – Part 5: Hoses 30.60 43.060.40 71.100.20 ISO/AWI 19880–6 Gaseous hydrogen – Fuelling stations – Part 6: Fittings 20.00 ISO/CD 19880–8 Gaseous hydrogen – Fuelling stations – Part 8: Hydrogen quality control