Permitting requirements / process

This Lap analyses the legal (regulations and standards) requirements for HRS and the permitting process, including the administrative process involved in obtaining the required approvals to build and operate a HRS.
Where applicable, it looks at whether the permitting process consists of several processes involving multiple permits and authorities and the nature of each of these processes and steps

Glossary:

Permitting requirements are the legal (regulations and standards) requirements for HRS and the permitting process is the administrative process involved in obtaining the required approvals to build and operate a HRS. The permitting process is actually several processes involving multiple permits and authorities.

Pan-European Assessment:

When considering the process for permitting of construction and operation of an HRS, there are very few countries where the regulations specifically target H2 HRS, the most advanced of these being Germany, Denmark, the UK and the Netherlands.
Where explicit requirements exist, they invariably require a risk assessment to be carried out covering safety risks associated with fire and explosion, risks to health and risks to the environment. The risk assessments should also identify the control measures to be put in place to provide an adequate level of public safety for the proposed installations. The risk assessment should include an assessment of the major accident hazards presented by the delivery, storage and dispensing of hydrogen at the site and identify controls and contingency plans.

Where specific regulations for hydrogen fuelling stations don’t exist, it is expected that authorities will draw on both the permitting process of conventional refuelling stations as well as the regulations applicable for (industrial) H2 storage and for H2 production. This method of working generates requirements well beyond those applicable to conventional stations and the permitting process carries some “regulatory risks” for the operator, as the interpretation and demands from the regional administrative authority can be different from one region to another. By contrast, the requirements for conventional fuel storage at refuelling station are very similar in all EU countries. The lack of experience of potential HRS operators as well as public authorities coupled with the lack of guidelines and instructions for local authorities can cause delays and extra costs and may lead to divergent interpretations from case-to-case, further complicating the obligations of HRS operators.
Is it a barrier?
No
Assessment Severity
0
Assessment
As long as the operation permissions is not issued, the HRS can’t be commercially operated. The LAP should not be regarded as a barrier – except it takes a lot of money to fulfil all requirements, thus a reasonable investment – from a commercial point of view doesn’t make sense

Questions:

Question 1 What is the competent authority responsible for the permitting requirements? If more than one, list them
According to the Trade Commerce and Industry Regulation Act the county administration acts as a one stop shop
Question 2 What are the different steps of the process (e.g. which authority in charge of each step)? If possible, add a flow chart.
The county administration acts as one stop shop, thus takes care of all relevant permissions and expert–inputs. Subsequently the county administration determines the process – which has to follow the procedure stated in the Trade Commerce and Industry Regulation Act. The precondition is that the land use plan allows for an installation/construction of a HRS
Question 3 Are there any exemptions/ “simplified” process (e.g. for demonstration projects)?
The Trade Commerce and Industry Regulation Act foresees the possibility for exemptions but in reality, it might result in an even more complicated process, which means that hydrogen is still an “exotic” topic, thus the authority will try to have certificates etc.
Question 4 What kind of permits are needed from the approval authority, and are they separated/integrated (single permit)? E.g. building permit, construction a operation permit for installations, environmental permit
The County administration issues a single permit taking the ordinance on storage and filling of flammable liquids, ordinance on the equipment requirements of filling stations, ordinance on explosion protection, ordinance on explosive atmosphere (VETAX) into consideration. The single permit determines the construction and the operation. t
Question 5 Is the process at local level uniform throughout a country? (uniform interpretation?)
Those provisions which have to be followed in line with laws on national level are uniform throughout a country, those provisions which are related to the land use plan (and minor other issues) are not uniform throughout the country but do not differ too much
Question 6 How long does it take to obtain a permit for the construction and operation of HRS? a) Is there a maximum response time for granting the permit? b) If yes, what is the response time? c) What is the actual experience in practice?
There are no statistical data available on the length of a permission process
Question 6 How long does it take to obtain a permit for the construction and operation of HRS? a - Is there a maximum response time for granting the permit?
a - For the process initiated by the county administration the process should be completed (so decided) within 4 months but realiter the process takes some times much longer
Question 6 How long does it take to obtain a permit for the construction and operation of HRS? b - If yes, what is the response time?
According to the relevant regulations it should take max. 4 months but in reality, the process takes some times much longer. To term a concrete lenght of the period to obtain a permit is not possible since the circumstances which can have an impact on the decision of the relevant authority have to be very often assessed on a case by case basis.
Question 6 How long does it take to obtain a permit for the construction and operation of HRS? c - What is the actual experience in practice? How long does it take to obtain a permit for the construction and operation of HRS?
There are no sound data available for the de facto response time. Although the applied one stop shop approach is very well accepted and supportive there are more and more regulations which have to be taken into consideration, thus slow down the speed of the process. In addition very often the circumstances require a case by case assessment which extends the lenght of the period needed for obtaining a permit
Question 7 Are there specific requirements from the authorities before/during/after construction of HRS for its commissioning?
No, one has to follow the relevant laws, mainly the Trade, Commerce and Industry Regulation act, the Regulation on pressure equipment (Druckgeräteverordnung) and the regulation on explosion protection (Explosionsschutzverordnung) etc (see answer to question 4).
Question 8 When is the HRS ready for operation?
Once the single permission has been issued and the HRS has been built respectively has been “approved” in terms that the obligations were de facto fulfilled
Describe the comparable technology and its relevance with regard to hydrogen
Basically CNG and or LNG because CNG is natural gas in compressed form highly explosive and flammable whereas LNG is similar to hydrogen stored in liquid form

National legislation:

EU Legislation:

  • Directive 2012/18/EU of the European Parliament and of the Council of 4 July 2012 on the control of major-accident hazards involving dangerous substances (so-called SEVESO Directive)
    The Directive covers situations where dangerous substances may be present (e.g. during processing or storage) in quantities exceeding certain thresholds.

    It establishes:
    • General obligations on the operator (Article 5)
    • Notification (information on the form and amount of substances, the activity, and the surrounding environment) of all concerned establishments (Article 7),
    • The obligation to deploy a major accident prevention policy (Article 8),
    • The obligation to produce a safety report for upper-tier establishments (Article 10);
    • The obligation to produce internal emergency plans for upper tier establishments (Article 12);
    • Authorities to exert control of the siting of new establishments, modifications to new establishments, and new developments including transport routes, locations of public use and residential areas in the vicinity of establishments, (Article 13)
    • The obligation to conduct public consultations on specific individual projects that may involve risk of major accidents (Article 15)

    Annex I, Part 1, establishes Hydrogen as a dangerous substance (therefore within scope) and lists the quantity of hydrogen for the application of lower-tier requirements (≥ 5t) and upper-tier requirements (≥ 50t).

    For quantities of less than 5 tonnes of hydrogen, none of the obligations above would apply.

    The Directive is relevant for both the approval of bunkering / landing installations as well as on board transport of hydrogen
  • ATEX Directive 2014/34/EU - covering equipment and protective systems intended for use in potentially explosive atmospheres
    The Directive defines the essential health and safety requirements and conformity assessment procedures (Article 4) to be applied before products are placed on the EU market and is significant for the engineering of hydrogen production plants. It covers inter alia equipment and protective systems intended for use in potentially explosive atmospheres.

    The Directive requires employers to classify areas where hazardous explosive atmospheres may occur into zones. The classification given to a particular zone, and its size and location, depends on the likelihood of an explosive atmosphere occurring and its persistence if it does.

    The Directive requires the manufacturers to design their equipment to be suitable for use within their customer’s explosive atmosphere. Therefore, manufacturers of equipment rely upon their customer to give them information about the classification of the zone and the flammable substance(s) within that zone.

    The Directive describes the rules and regulations for all actors in the value chain, with respect to ensuring that only safe equipment for use in potentially explosive atmospheres are sold and applied. It provides regulation of how the equipment shall be constructed, produced and documented, as well as the rules for CE-labelling.

    It also contains, inter alia conformity assessment procedures (Art 13) EU declaration of conformity (Art 14) and General principles of the CE marking (Art 16)

    The Directive is relevant for the approval of landing / bunkering installations
  • Directive 2014/52/EU of the European Parliament and of the Council of 16 April 2014 amending Directive 2011/92/EU on the assessment of the effects of certain public and private projects on the environment).
    The Directives (and their subsequent amendments) define a strategic environmental impact assessment procedure. The procedure is summarized as follows: the developer may request the competent authority define what should be covered by the EIA information to be provided by the developer (scoping stage); the developer must provide information on the environmental impact (EIA report – Annex IV); the environmental authorities and the public (and affected Member States) must be informed and consulted; the competent authority decides, taken into consideration the results of consultations. The public is informed of the decision afterwards and can challenge the decision before the courts.

    In line with the EIA Directive, Production and Storage of Hydrogen falls within the projects listed in Annex II (6a and 6c -production of chemicals; and storage facilities for chemical product), for which Member States shall determine whether the project shall be made subject to an assessment or not. In some EU countries, storage of 5 tons of hydrogen or more falls within the scope of the Directives.

    The latest amendment, (Directive 2014/52/EU) introduces minimum requirements with regards to the type of projects subject to assessment, the main obligations of developers, the content of the assessment and the participation of the competent authorities and the public.
  • Directive 2011/92/EU of the European Parliament and of the Council of 13 December 2011 on the assessment of the effects of certain public and private projects on the environment (EIA Directive)
    The Directives (and their subsequent amendments) define a strategic environmental impact assessment procedure. The procedure is summarized as follows: the developer may request the competent authority define what should be covered by the EIA information to be provided by the developer (scoping stage); the developer must provide information on the environmental impact (EIA report – Annex IV); the environmental authorities and the public (and affected Member States) must be informed and consulted; the competent authority decides, taken into consideration the results of consultations. The public is informed of the decision afterwards and can challenge the decision before the courts.

    In line with the EIA Directive, Production and Storage of Hydrogen falls within the projects listed in Annex II (6a and 6c -production of chemicals; and storage facilities for chemical product), for which Member States shall determine whether the project shall be made subject to an assessment or not. In some EU countries, storage of 5 tons of hydrogen or more falls within the scope of the Directives.

    The latest amendment, (Directive 2014/52/EU) introduces minimum requirements with regards to the type of projects subject to assessment, the main obligations of developers, the content of the assessment and the participation of the competent authorities and the public.
  • Directive 2001/42/EC on the assessment of the effects of certain plans and programmes on the environment (SEA Directive)
    The Directives (and their subsequent amendments) define a strategic environmental impact assessment procedure. The procedure is summarized as follows: the developer may request the competent authority define what should be covered by the EIA information to be provided by the developer (scoping stage); the developer must provide information on the environmental impact (EIA report – Annex IV); the environmental authorities and the public (and affected Member States) must be informed and consulted; the competent authority decides, taken into consideration the results of consultations. The public is informed of the decision afterwards and can challenge the decision before the courts.

    In line with the EIA Directive, Production and Storage of Hydrogen falls within the projects listed in Annex II (6a and 6c -production of chemicals; and storage facilities for chemical product), for which Member States shall determine whether the project shall be made subject to an assessment or not. In some EU countries, storage of 5 tons of hydrogen or more falls within the scope of the Directives.

    The latest amendment, (Directive 2014/52/EU) introduces minimum requirements with regards to the type of projects subject to assessment, the main obligations of developers, the content of the assessment and the participation of the competent authorities and the public.
    X
  • Directive 2014/94/EU of the European Parliament and of the Council of 22 October 2014 on the deployment of alternative fuels infrastructure (AFID)
    The AFID establishes a common framework of measures for the deployment of alternative fuels infrastructure in the Union in order to minimize dependence on oil and to mitigate the environmental impact of transport.

    The Directive sets out minimum requirements for the building-up of alternative fuels infrastructure, including recharging points for electric vehicles and refuelling points for natural gas (LNG and CNG) and hydrogen, to be implemented by means of Member States' national policy frameworks, as well as common technical specifications for such recharging and refuelling points, and user information requirements.

    Article 2 defines ‘Alternative fuels’ as fuels or power sources which serve, at least partly, as a substitute for fossil oil sources in the energy supply to transport and which have the potential to contribute to its decarbonisation and enhance the environmental performance of the transport sector. They include, inter alia: hydrogen.

    It lays down, in Article 5, that Member States which decide to include hydrogen refuelling points accessible to the public in their national policy frameworks shall ensure that, by 31 December 2025, an appropriate number of such points are available, to ensure the circulation of hydrogen-powered motor vehicles, including fuel cell vehicles, within networks determined by those Member States, including, where appropriate, cross-border links.

    Annex II contains technical specifications for hydrogen refuelling points for motor vehicles and additionally lays down that:
    • Outdoor hydrogen refuelling points dispensing gaseous hydrogen used as fuel on board motor vehicles shall comply with the technical specifications of the ISO/TS 20100 Gaseous Hydrogen Fuelling specification.
    • The hydrogen purity dispensed by hydrogen refuelling points shall comply with the technical specifications included in the ISO 14687-2 standard.
    • Hydrogen refuelling points shall employ fuelling algorithms and equipment complying with the ISO/TS 20100 Gaseous Hydrogen Fuelling specification.
    • Connectors for motor vehicles for the refuelling of gaseous hydrogen shall comply with the ISO 17268 gaseous hydrogen motor vehicle refuelling connection devices standard.
  • ISO/TS 19880–1:2016(en) Gaseous hydrogen – Fuelling stations – Part 1: General requirements 90.92 43.060.40 71.100.20 ISO/NP 19880–1 Gaseous hydrogen – Fuelling stations – Part 1: General requirements 10.99 43.060.40 71.100.20 ISO/CD 19880–2 Gaseous hydrogen – Fuelling stations –– Part 2: Dispensers 30.92 43.060.40 71.100.20 ISO/DIS 19880–3 Gaseous hydrogen – Fuelling stations – Part 3: Valves 40.60 43.060.40 71.100.20 ISO/AWI 19880–4 Gaseous hydrogen – Fuelling stations – Part 4: Compressors 20.00 ISO/CD 19880–5 Gaseous hydrogen – Fuelling stations – Part 5: Hoses 30.60 43.060.40 71.100.20 ISO/AWI 19880–6 Gaseous hydrogen – Fuelling stations – Part 6: Fittings 20.00 ISO/CD 19880–8 Gaseous hydrogen – Fuelling stations – Part 8: Hydrogen quality control